

The Equilibrium Constant

$$CO(g) + Cl_2(g) = COCl_2(g)$$

$$K_c = 4.57 \times 10^9$$

Chemistry Essentials - 065

Reactants — Products

$$K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

$$2NO(g) + 2H_2(g) = N_2(g) + 2H_2O(g)$$

$$K = \frac{[N_2][H_2O]^2}{[NO]^2[H_2]^2}$$

$$aA + bB = cC dD$$

$$K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

$$K_c = 4.57 \times 10^9$$
 at 25°C

$$K_c = .05$$
at $200^{\circ}C$

$$CO(g) + Cl2(g) = COCl2(g)$$

$$K = \frac{[COCl_2]}{[CO][Cl_2]}$$

$$aA + bB = cC dD$$

$$K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

$$N_2(g) + O_2(g) = 2NO(g)$$

$$K = \frac{[NO]^2}{[N_2][O_2]}$$

$$K_c = 1.0 \times 10^{-30}$$
at 25°C

Did you learn?

To use the value of K in a reversible reaction to determine which chemicals will have very large versus very small concentrations at equilibrium.

Acknowledgements

"File:Lightning Hits Tree.jpg," January 2, 2014. http://en.wikipedia.org/wiki/File:Lightning_hits_tree.jpg.

"File:Nitric-Oxide-3D-vdW.png," January 2, 2014. http://en.wikipedia.org/wiki/File:Nitric-oxide-3D-vdW.png.

"File:Phosgene Poster ww2.jpg," January 2, 2014. http://en.wikipedia.org/wiki/File:Phosgene_poster_ww2.jpg.

"Reversible Reactions." *PhET*, January 2, 2014. http://phet.colorado.edu/en/simulation/reversible-reactions.

www.bozemanscience.com